Prezados membros da Associação Brasileira de Geologia de Engenharia e Ambiental (ABGE),

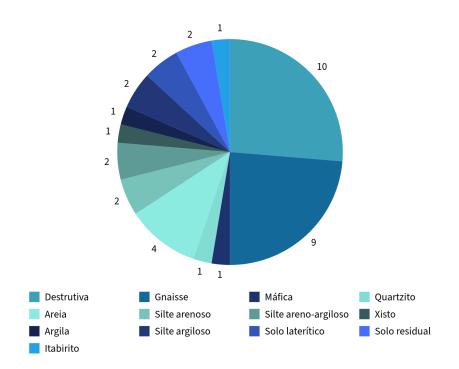
O resumo a seguir é direcionado para os seguintes temas:

- (i) Interpretação dos itens 5.k da Norma ABGE 103 e 6.m da Norma ABGE 104, que tratam da medição do Nível d'Água (NA) após a conclusão das sondagens, incluindo a *Etapa 4* do Anexo A da Norma ABGE 103, e analogia aos testes de vida em instrumentos geotécnicos;
- (ii) Definição de critérios técnicos para paralisação das leituras, com o objetivo de obtenção do NA estabilizado.

# 1. Item (i) - Interpretação das Normas

As normas citadas estabelecem tempos mínimos de espera para obtenção do NA, com referência a intervalos de 6, 12 e 24 horas. Ainda, a redação da *Etapa 4* da Norma ABGE 103 indica a possibilidade de realizar leituras sequenciais. Todavia, na prática, não se observa essa metodologia de leituras.

Na Vale, as leituras de NA após a conclusão da sondagem são realizadas geralmente após 24 horas, com as hastes ainda no furo. A permanência das hastes gera um tempo de ociosidade dos equipamentos, que devem aguardar finalizar o período para retirá-las (método utilizado: Wireline).


Desta forma, com os vários tempos para leitura, com a ausência de critérios de leituras da Etapa 4 e com as horas ociosas inerentes (hastes no furo, para garantir o processo de tamponamento), apresentamos uma análise comparativa com dados de ensaios de rebaixamento oriundos de testes de vida de INAs e piezômetros.

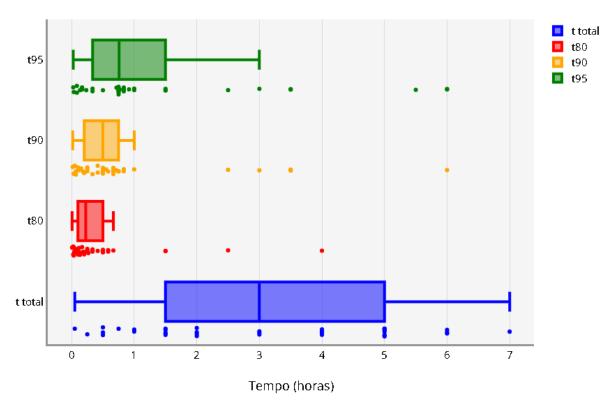
Essa analogia é justificada pela similaridade dos procedimentos utilizados na Vale, onde o revestimento ou a haste de perfuração permanece no furo até o término do período de estabilização do NA. Os resultados demonstram que os tempos de estabilização observados nesses testes são, em média, inferiores aos tempos indicados nas normas, contendo 38 registros de diferentes áreas operacionais (regiões sudeste e norte do Brasil).

#### 1.1 Breve Análise dos Ensaios

Foram analisados aproximadamente 50 ensaios, sendo descartados aqueles com NA seco ou abaixo do instrumento. Os ensaios abrangeram diferentes litologias, com destaque para o

Quadrilátero Ferrífero e Carajás (Figura 1). Ressalta-se que esta amostra representa apenas uma parte do banco de dados da Vale, o qual possui volume significativamente maior de informações referentes a esse tipo de ensaio. O estudo completo encontra-se em andamento; entretanto, entende-se que o conjunto aqui apresentado já é suficientemente representativo e relevante quando comparado à disponibilidade de dados observada na comunidade técnica em geral.




**Figura 1** - Distribuição de litologias onde ocorreram as instalações dos INAs e piezômetros avaliados

A Figura 2 apresenta a distribuição dos tempos observados nos ensaios, por meio de gráficos do tipo *box-plot*, abrangendo o tempo total e os tempos correspondentes a 80%, 90% e 95% de dissipação da carga (t<sub>80</sub>, t<sub>90</sub> e t<sub>95</sub>). Os resultados são apresentados em horas, de modo a facilitar a interpretação e a comparação entre os diferentes estágios de estabilização.

Como conclusão do estudo, obtivemos os resultados médios abaixo:

- 80% da carga inicial: estabilização média em 0,45 horas;
- 90% da carga inicial: estabilização média em 0,86 horas;
- 95% da carga inicial: estabilização média em 1,31 horas;
- Estabilização total: média de 3,10 horas.

# **Boxplot**



**Figura 2** - *Box-plot* dos pontos avaliados para tempo total, t<sub>80</sub>, t<sub>90</sub> e t<sub>95</sub> em horas (linha central indica a mediana dos dados)

Os ensaios de rebaixamento seguiram as diretrizes da Norma ABGE 107, Item 6.1.5.c, que recomenda a finalização do ensaio quando o rebaixamento atingir 20% da carga inicial (nível d'água preenchido até a boca do furo).

# 2. Item (ii) – Critérios para Paralisação das Leituras

Com base na análise realizada, entende-se que a adoção de **critérios técnicos de estabilização**, em substituição ao tempo mínimo normativo, é viável, desde que sejam realizadas **leituras sucessivas de acompanhamento**, em conformidade com a *Etapa 4* da Norma ABGE 103.

Considerando jornadas em turno administrativo (07h às 17h) ou em dois turnos (06h às 01h), sugere-se os seguintes procedimentos normativos:

- 1. Leitura imediata após a conclusão do furo;
- 2. **Conclusão do furo ao final do turno**: realizar leitura na manhã seguinte, conforme previsto nas normas ABGE 103 e 104;
- Conclusão do furo no início ou meio do turno: realizar leituras recorrentes conforme metodologia descrita no Item 2.1 a seguir, com paralisação baseada na estabilização observada.

### 2.1 Metodologia Proposta para Leituras do NA

De acordo com a *Etapa 4* da Norma ABGE 103, recomenda-se que as leituras do NA após a conclusão do furo sigam intervalos progressivos, conforme Tabela 1, abrangendo medições em intervalos de 5 a 60 minutos ao longo das 24 horas subsequentes.

**Tabela 1** - Proposta de intervalos de leituras de NA.

| Período do<br>Ensaio | Intervalo entre<br>Leituras | Número de Leituras<br>no Período | Tempo Total<br>Coberto | Leituras<br>Acumuladas |
|----------------------|-----------------------------|----------------------------------|------------------------|------------------------|
| 0 – 1 h              | 5 min                       | 12                               | 1 h                    | 12                     |
| 1 – 2 h              | 10 min                      | 6                                | 1 h                    | 18                     |
| 2 – 3 h              | 20 min                      | 3                                | 1 h                    | 21                     |
| 3 – 4 h              | 30 min                      | 2                                | 1 h                    | 23                     |
| 4 – 24 h             | 60 min                      | 20                               | 20 h                   | 43                     |

Total de leituras previstas: 43 medições ao longo de 24 horas\*.

**Observação:** a primeira leitura deve ser registrada imediatamente após o término da perfuração, e as demais devem seguir os intervalos indicados conforme o período do ensaio.

<sup>\*</sup> Na disponibilidade de equipes para realizar as leituras.

## 2.1.1 Nível d'Água de Referência

Para esta metodologia, o NA de referência é uma medida complementar. Não há garantia do seu conhecimento prévio. Durante a perfuração, o NA de referência do furo (excluindo situações de artesianismo) pode ser monitorado durante a operação, especialmente nas manhãs, com intervalos de estabilização de até 12 horas. Após fins de semana ou feriados, por até 48 horas ou mais.

#### 2.1.2 Definição do critério de paralisação

O monitoramento pode ser conduzido de duas formas::

#### a) Com NA de Referência conhecido

Adotar o NA de referência e calcular a dissipação da carga inicial. Com base neste critério, entende-se que se pode adotar t80, t90 ou t95. Sugere-se t80, em conformidade com a norma de ensaio de rebaixamento (rebaixamento até 20% da carga total – norma ABGE 107 Item 6.1.5.c).

Ao final do turno (por exemplo: 17h), caso não ocorra a estabilização para o tempo pré-determinado, realizar a leitura no dia seguinte e concluir o período de monitoramento conforme norma.

#### b) Taxa de variação de leituras

Quando não há conhecimento do NA de referência, realizar o monitoramento da taxa de variação das leituras. Para identificar o momento de estabilização do nível d'água durante o ensaio, sugere-se a adoção de um critério baseado na variação percentual da inclinação entre leituras consecutivas ao longo do tempo. A metodologia fundamenta-se na análise da curva de variação do nível d'água (NA) em função do tempo, que apresenta comportamento tipicamente logarítmico, com variação acentuada nas primeiras horas e tendência à estabilização em estágios posteriores (Figura 3).

Para cada trecho entre leituras consecutivas, foi ajustada uma reta e calculada a inclinação percentual (Ii), definida como a razão entre a variação do nível d'água ( $\Delta NAi$ ) e a variação de tempo correspondente ( $\Delta ti$ ), expressa em porcentagem conforme a Equação (1) a (3):

Sejam duas leituras consecutivas *NAi-1* e *NAi*:

$$\Delta NAi = NAi - (NAi - 1)$$
 Eq.1  
 $\Delta ti = ti - (ti - 1)$  Eq.2

$$Ii(\%) = (\Delta NAi/\Delta ti)x100$$

Eq. 3

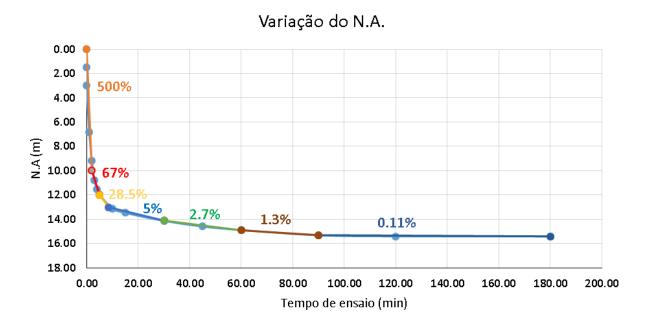



Figura 3 - Gráfico típico da variação de N.A ao longo do tempo

A interpretação da estabilização é realizada a partir da tendência de redução progressiva da inclinação ao longo do ensaio. No início, observam-se valores elevados de (*Ii*), frequentemente superiores a 100%, indicando variação rápida do nível d'água. Com o avanço do tempo, ocorre a redução gradativa dessa taxa, com inclinações médias entre 60% e 20% nos trechos intermediários, e inferiores a 5% na fase final.

A partir da análise gráfica, constata-se que, à medida que a curva de variação do nível d'água tende ao regime estacionário, o valor de (*li*) aproxima-se de zero. Assim, propõe-se como **critério prático de estabilização**, com base na avaliação dos banco de dados analisado, considerar o sistema estabilizado quando a inclinação entre leituras consecutivas for **inferior a** 1%:

Esse critério é simples de aplicar em campo e pode ser calculado em planilha eletrônica a partir das leituras de nível d'água e tempo, permitindo a visualização imediata da tendência de estabilização e a tomada de decisão quanto ao encerramento do ensaio.

Na Figura 4 é apresentado um exemplo de aplicação da metodologia para os resultados de um dos ensaios analisados. Verifica-se que o ensaio foi finalizado com 420 minutos (6h) e a variação percentual da inclinação (li) foi inferior a 1% a partir de 360 minutos, indicando a estabilização. A avaliação da curva de variação do NA com o tempo também demonstra esta estabilização a partir dos 360 minutos.

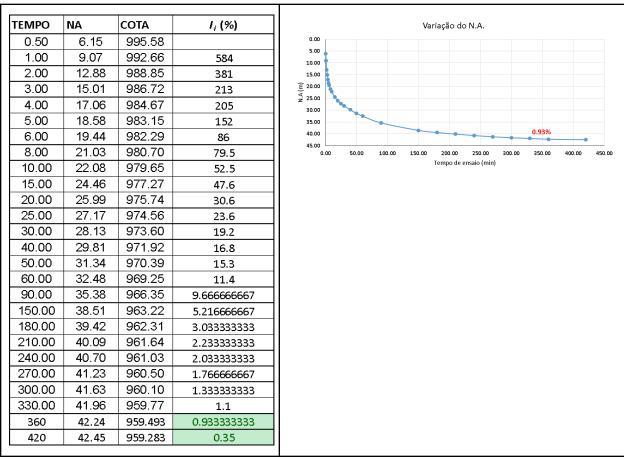



Figura 4 - Exemplo de aplicação do método proposto

Como forma complementar de avaliação, também foi analisada a **velocidade de rebaixamento do nível d'água**, expressa em metros por hora (m/h). Esse parâmetro indica a taxa instantânea de variação do NA em função do tempo e é calculado conforme a Equação (4):

 $vi(\%) = (\Delta NAi/\Delta ti)$  Eq. 4

Onde vi é a velocidade de rebaixamento (m/h) no trecho entre as leituras i-1 e i.

Quanto menor for essa velocidade, mais próximo o ensaio se encontra da estabilização.

A análise dos dados experimentais demonstrou que, para os ensaios avaliados, uma velocidade de rebaixamento inferior a 0,5 m/h representa uma condição em que o sistema pode ser considerado praticamente estabilizado. A Figura 5 demonstra os mesmos dados do exemplo de ensaio apresentado na Figura 4, com o cálculo das velocidades de rebaixamento. Observa-se que ao final do ensaio, tanto o critério da porcentagem de inclinação inferior a 1% e velocidade de rebaixamento inferior a 0,5 m/h são atendidos, indicando a estabilidade.

| TEMPO  | NA    | СОТА    | I; (%)      | ν <sub>i</sub> (m/h) |
|--------|-------|---------|-------------|----------------------|
| 0.50   | 6.15  | 995.58  |             |                      |
| 1.00   | 9.07  | 992.66  | 584         | 350.4                |
| 2.00   | 12.88 | 988.85  | 381         | 228.6                |
| 3.00   | 15.01 | 986.72  | 213         | 127.8                |
| 4.00   | 17.06 | 984.67  | 205         | 123                  |
| 5.00   | 18.58 | 983.15  | 152         | 91.2                 |
| 6.00   | 19.44 | 982.29  | 86          | 51.6                 |
| 8.00   | 21.03 | 980.70  | 79.5        | 47.7                 |
| 10.00  | 22.08 | 979.65  | 52.5        | 31.5                 |
| 15.00  | 24.46 | 977.27  | 47.6        | 28.56                |
| 20.00  | 25.99 | 975.74  | 30.6        | 18.36                |
| 25.00  | 27.17 | 974.56  | 23.6        | 14.16                |
| 30.00  | 28.13 | 973.60  | 19.2        | 11.52                |
| 40.00  | 29.81 | 971.92  | 16.8        | 10.08                |
| 50.00  | 31.34 | 970.39  | 15.3        | 9.18                 |
| 60.00  | 32.48 | 969.25  | 11.4        | 6.84                 |
| 90.00  | 35.38 | 966.35  | 9.666666667 | 5.8                  |
| 150.00 | 38.51 | 963.22  | 5.216666667 | 3.13                 |
| 180.00 | 39.42 | 962.31  | 3.033333333 | 1.82                 |
| 210.00 | 40.09 | 961.64  | 2.233333333 | 1.34                 |
| 240.00 | 40.70 | 961.03  | 2.033333333 | 1.22                 |
| 270.00 | 41.23 | 960.50  | 1.766666667 | 1.06                 |
| 300.00 | 41.63 | 960.10  | 1.333333333 | 0.8                  |
| 330.00 | 41.96 | 959.77  | 1.1         | 0.66                 |
| 360    | 42.24 | 959.493 | 0.933333333 | 0.56                 |
| 420    | 42.45 | 959.283 | 0.35        | 0.21                 |

Figura 5 - Exemplo de critério de avaliação conjunta entre li e vi

# 3. Considerações Complementares e Finais

- No procedimento proposto, não é realizado o preenchimento do furo com água até a boca, o que resulta em uma menor carga hidráulica a ser dissipada e, consequentemente, em tempos de estabilização mais curtos quando comparados a métodos tradicionais;
- Caso o nível d'água não apresente estabilização dentro do período de observação de 24 horas, essa informação também deve ser registrada, pois indica a necessidade de monitoramento prolongado. Nesses casos, recomenda-se a instalação de um instrumento de nível d'água (INA) para acompanhamento em dias subsequentes;
- Em furos secos, com registro de perda de retorno de água (circulação) durante a operação, entende-se que não há necessidade de aguardar o período de estabilização, sendo o comportamento do furo indicativo de alta permeabilidade local ou presença de material não saturado:
- A análise dos dados obtidos indicou que a estabilização prática pode ser avaliada a partir da análise da curva de variação de N.A. com o tempo, sendo a estabilização considerada atingida quando a inclinação da reta de ajuste entre leituras consecutivas é inferior a 1% e a velocidade de rebaixamento é menor que 0,5 m/h. Esses limites mostraram-se adequados para representar a condição de equilíbrio hidráulico, oferecendo um critério objetivo e aplicável em campo para a interrupção das leituras. Em complemento, pode avaliar a extrapolação do critério no(s) primeiros(s) furos da campanha para entendimento do comportamento;
- Recomenda-se incluir uma etapa prévia de limpeza do furo com água, com o objetivo de remover o excesso de polímero residual proveniente da perfuração. Essa prática contribui para melhorar a qualidade das leituras de nível d'água, embora ainda não esteja contemplada nas normas técnicas vigentes;